Contribution from the Institute of Inorganic Chemistry, University of Fribourg, Perolles, CH-1700 Fribourg, Switzerland

Gaseous Complexes of Nickel Chloride with Indium Chloride

FALKO DIENSTBACH and FRANZPETER EMMENEGGER*

Received February 25, 1977

AIC70141Z

The reactions NiCl₂(s) + nInCl₃(g) = NiCl₂(InCl₃)_n(g) (n = 1, 2) have been studied by optical spectroscopy and by quenching and analyzing the equilibrated gas phase [for n = 1, $\Delta H^{\circ}_{298} = 22.4$ kcal mol⁻¹ and $\Delta S^{\circ}_{298} = 15.7$ eu; for n = 2, $\Delta H^{\circ}_{298} = -12.3$ kcal mol⁻¹ and $\Delta S^{\circ}_{298} = -24.3$ eu]. In NiIn₂Cl₈(g) a tetrahedral NiCl₄ center is indicated by the relative stabilities of the series NiCl₂(InCl₃)_n(g) and CoCl₂(InCl₃)_n(g). The optical spectra, however, are in favor of an octahedral NiCl₆ chromophore.

There are very few examples illustrating the first step of the formation of gaseous complexes according to

 $MCl_{2}(s) + LCl_{3}(g) = MLCl_{5}(g)$ (1)

(where M = alkaline earth metal, first-row transition metal; L = Al, Ga, In, Fe), while the overall reaction

$$MCl_2(s) + 2LCl_3(g) = ML_2Cl_8(g)$$
⁽²⁾

has been studied extensively.^{1,5} The only systems where both equilibria 1 and 2 have been investigated are $CoCl_2/InCl_3^2$ and $CuCl_2/GaCl_3$.³ From general stability trends,⁴ the system $NiCl_2/InCl_3$ seemed to be particularly well suited to study reaction 1, and it was hoped that a complete set of equilibrium constants and optical spectra in the systems $NiCl_2/InCl_3$ and $CoCl_2/InCl_3^2$ would allow one to correlate stability and structure of these complexes.

Experimental Section

Experimental and computational techniques used in this investigation have been described in ref 2, 4, and 6. Experimental details about the samples used for optical spectroscopy are given in Table I, and those for the quenching experiments in Table II.

Results

If NiCl₂ is heated with and without InCl₃, the gas-phase spectra are very similar but, at any given temperature, the NiCl₂/InCl₃ sample has a much higher absorption than the NiCl₂ sample (Figure 1). A similar observation has been made in the system CoCl₂/InCl₃ where the spectra of CoCl₂(g) and CoInCl₅(g) differ mainly in their molar absorptivities.² As the spectrum of NiAl₂Cl₈(g)⁸ is very different from that of the NiCl₂/InCl₃ gas phase, the latter is most probably due to NiInCl₅(g).

Owing to the similar spectra of NiCl₂(g) and NiInCl₅(g), the vapor pressure and the molar absorptivity of nickel chloride have to be known before the formation of NiInCl₅(g) can be investigated by optical spectroscopy. Literature values for the vapor pressure of NiCl₂ vary appreciably.^{7,9,10} To choose an appropriate one, we measured the absorption of NiCl₂(g) in equilibrium with NiCl₂(s) as a function of temperature (Table I, sample 6). In good agreement with Kubaschewski⁷ and Schäfer¹⁰ we obtained eq 3.

$$\log \left[p_{\text{NiCl}_{2}} (\text{atm}) \right] = 10.13 (\pm 0.3) - [12420 (\pm 313)]/T$$
(3)¹¹

With increasing temperature, the absorption of spectrophotometric cells containing NiCl₂ alone, or NiCl₂ plus InCl₃, rises (Figure 1) until all the NiCl₂ and InCl₃ have evaporated. From the maximum of absorption (A_{max} at T_{max} , Table I), the analysis of the content of the cell (Ni, atomic absorption; In, EDTA titration), its volume and optical path length, the molar absorptivities ϵ of NiCl₂(g) and NiInCl₃(g) can be calculated.⁴ In calculating $\epsilon_{\text{NiInCl}_3(g)}$ at 20.9 × 10³ cm⁻¹ the absorption due to the vapor pressure of NiCl₂(g) is computed and subtracted

Table	Ĭ.	Samples	for	VIS	Spectroscopy

Sam-	Vol.	Amt,	mg	Tmov.		
plea	cm ³	InCl ₃	NiCl ₂	A_{\max}	°C	ϵ^{b}
1	30.47	138.20	4.55	2.55	795	268
2	33.02	78.35	4.89	2.35	820	321
3	32.65	190.66	4.15	2.41	780	29 0
4	32.06	189.56	1.68	1.05	720	281
5	~32	674.6	Excess			
6	38.95		9.20	2.13	865	11712

^a Optical path length is 10 cm for all samples. ^b ϵ at 20.9 × 10³ cm⁻¹ (in M⁻¹ cm⁻¹).

Table II. Samples for Quenching Experiments (550 °C)

Vol.	Vol. Amt, mg		ŀ				
cm ³	NiCl ₂	InCl ₃	NiInCl ₅	NiIn ₂ Cl ₈	In ₂ Cl ₆	$K_{\mathbf{c},2}$, atm ⁻¹	
102.9	2.770	1932	2.17×10^{-3}	1.19 × 10 ⁻²	4.43	13.89 × 10 ⁻³	
87.9	1.354	975	1.65×10^{-3}	6.38×10^{-3}	2.54	13.01×10^{-3}	

Table III. Molar Absorptivities

	MCl ₂ - (g)	MIn- Cl ₅ (g)	MIn ₂ - Cl ₈ (g)	Ref
$M = Co; \epsilon_{\sim 1.5} \mu m^{-1} a$ $M = Ni; \epsilon_{\sim 2.1} \mu m^{-1} a$	54	85	158	2, 12
	117	290	88 ⁶	12

^a Molar absorptivities at ν_{max} (in M⁻¹ cm⁻¹). ^b NiAl₂Cl₈(g).⁸

from the measured maximum absorption. Values for the molar absorptivities are given in Tables I and III.

As long as there is solid NiCl₂ but no solid InCl₃ in the optical cells, eq 4 and 5 hold, where n is the number of moles

$$n_{\text{NiInCl}_{5}} = (A_{\text{tot}} - A_{\text{NiCl}_{2}(g)}) V_{\text{cell}} / \epsilon_{\text{NiInCl}_{5}} l_{\text{cell}}$$
(4)

$$p_{\mathrm{InCl}_3, \mathrm{tot}} = p_{\mathrm{InCl}_3} + 2p_{\mathrm{In}_2 \mathrm{Cl}_6} + p_{\mathrm{NiInCl}_5}$$
(5)

and V the volume of the spectrophotometric cell with optical path length l. In combining eq 4 and 5 with K_{diss} , the dissociation constant of $In_2Cl_6(g)$,¹³ eq 6, and with the law of ideal

$$K_{\rm diss} = \frac{p_{\rm InCl_3}^2}{p_{\rm In_2 Cl_6}} = \frac{p_{\rm m}^2}{p_{\rm d}}$$
(6)

$$\log [K_{diss} (atm)] = 6.9562 - 6313/T$$

gases, Beer's law, and eq 3, p_{InCl_3} and p_{NiInCl_5} (= $p_{c,m}$) can be calculated.^{2,4} With a graph of log $p_{c,m}$ vs. log p_m , the stoichiometry of NiInCl₅(g) is confirmed:⁴ Ni:In = 1:1 (±0.25).¹¹ For the formation of NiInCl₅(g) according to reaction 1, we obtain

$$\log K_{\rm c,1} = \log \frac{p_{\rm c,1}}{p_{\rm m}} = 3.04 \, (\pm 0.13) - [4670 \, (\pm 130)]/T \quad (7)^{11}$$

In sample 5 (Table I), the conditions to observe the spectrum of NiIn₂Cl₈(g) are as favorable as we can achieve, $p_{InCl_3,tot} \simeq 5.5$ atm at 550 °C in equilibrium/with NiCl₂(s), but the

Table IV. Enthalpies and Entropies of Reaction in the Systems CoCl₂/InCl₃ and NiCl₂/InCl₃

		M = Co			M = Ni		
Reaction	$\Delta C_p(\text{estd}),$ cal K ⁻¹ mol ⁻¹	ΔH°_{298} , kcal mol ⁻¹	$\Delta S^{\circ}_{298},$ eu	Ref	$\frac{\Delta H^{\circ}_{298}}{\text{kcal mol}^{-1}}$	$\Delta S^{\circ}_{298},$ eu	Ref
$MCl_{2}(s) = MCl_{2}(g)$ $2MCl_{2}(g) = M_{2}Cl_{4}(g)$	-4.5 2	59.5 - 36.5	52.0 -32.0	7, 16 14, 15	59.1 - 34.6	51.7 -32.0	10 15
$MCl_{2}(s) + InCl_{3}(g) = MInCl_{5}(g)$ $MCl_{2}(s) + 2InCl_{3}(g) = MIn_{2}Cl_{8}(g)$	-1.5 2.5	19.6 -19 . 3	$16.3 \\ -25.6$	2 2, 5	22.4 -12.3	$15.7 \\ -24.3$	
$MCl_{2}(g) + InCl_{3}(g) = MInCl_{5}(g)$ MInCl_{5}(g) + InCl_{3}(g) = MIn_{2}Cl_{8}(g)	3 4	- 38.9 - 39.2	-35.2 -41.2	2 2	- 37.5 - 34.5	- 35.9 39.8	

^a Estimated errors: ΔH , ± 2 kcal mol⁻¹; ΔS , ± 2 eu.

Figure 1. Spectra of NiCl₂(g) (peak at 21.1×10^3 cm⁻¹) and NiInCl₅(g) (peak at 20.9×10^3 cm⁻¹) at ~800 and ~850 °C.

absorption in the visible region does not exceed 0.15. This result can be used to estimate an upper limit for the molar absorptivity of NiIn₂Cl₈(g), $\epsilon_{\text{NiIn_2Cl_8}(g)} < 100 \text{ M}^{-1} \text{ cm}^{-1}$, but it should be kept in mind that the spectra of NiInCl₅(g) and NiIn₂Cl₈(g) certainly overlap. The quenched gas phase of sample 5 contains more nickel than can be accounted for by NiCl₂(g) and NiInCl₅(g), indicating that NiIn₂Cl₈(g) is formed. From two quenching experiments in special ampules⁶ (Table II) we find at 550 °C

$$K_{c,2} = \frac{p_{\text{NIIn}_2 \text{Cl}_3}}{p_{\text{InCl}_3}^2} = \frac{p_{c,2}}{p_{\text{m}}^2} = [13.45 \ (\pm 0.62)] \times 10^{-3} \text{ atm}^{-1}$$

 $\Delta S_T = -22$ eu is a reasonable estimate for reaction 2.^{1,4} If we use this to calculate the temperature dependence of $K_{c,2}$ from its value at 550 °C, we obtain

$$\log \left[K_{c,2} \,(\text{atm}) \right] = -4.78 + 2395/T \tag{8}$$

With eq 3, 7, and 8, the molar absorptivities of NiCl₂(g) and NiInCl₅(g), and the assumption that NiIn₂Cl₈(g) does not contribute to the absorption, the temperature dependence of the absorption of samples 1–4 (Table I) can be calculated. The calculated curves fit the experimental points extremely well. This fit is most critical for sample 4 (Figure 2) where the temperature of maximum absorption, T_{max} , is rather low and therefore the amount of NiIn₂Cl₈(g) is relatively high. We consider the agreement between computed curve and experimental points (allowing for 2% error in the nickel analysis)

Figure 2. Temperature dependence of the absorption due to formation and decomposition of gaseous NiCl₂/InCl₃ complexes: O, +, experimental points; —, curve calculated considering NiCl₂(g), NiInCl₅(g), and NiIn₂Cl₈(g); ---, curve calculated considering NiCl₂(g) and NiInCl₅(g).

a valid proof that eq 7 and 8 are reasonable.

To further check eq 7 and 8, transpiration experiments have been performed at 528 °C. In evaluating these experiments, two equilibrium constants have to be simultaneously calculated from one set of data,² and therefore the limits of error in the result are large. Nevertheless, the mutual agreement¹⁷ of the equilibrium constants from optical and from entrainment experiments is considered a confirmation of the more precise result obtained by VIS spectroscopy. $K_{c,1}$: at 528 °C (entrainment), $[1.7 (\pm 1.4)] \times 10^{-3}$;¹¹ eq 7, 1.6×10^{-3} . $K_{c,2}$: at 528 °C (entrainment), $[8.4 (\pm 59)] \times 10^{-3}$ atm⁻¹,¹¹ eq 8, 1.6 $\times 10^{-2}$ atm⁻¹.

Figure 3 summarizes the results by showing the equilibrium pressures in the $NiCl_2/InCl_3$ system.

Discussion

Our result that nickel complexes are less stable than cobalt complexes in the cases $MInCl_5(g)$ and $MIn_2Cl_8(g)$ is in line with previous observations in the MCl₂/Al₂Cl₆ and MCl₂/ Fe_2Cl_6 systems.⁵ If ligand field stabilization is important in $ML_2Cl_8(g)$, the observed stability trend would indicate tetrahedral rather than octahedral coordination around M. But, while the absorption spectra of $CoL_2Cl_8(g)$ are consistent with a tetrahedral CoCl₄ chromophore,⁴ this is not the case for $NiAl_2Cl_8(g)$,⁸ which seems to tend toward an octahedral NiCl₆ center. Although we were not able to measure the spectrum of NiIn₂Cl₈(g), it is safe to assume^{2,4,6} that it resembles closely the spectrum of $NiAl_2Cl_8(g)$. We may therefore compare the molar absorptivities of the 21×10^3 cm⁻¹ band given in Table III. The observed trend is consistent with loss of the center of symmetry of the chromophore in going from linear $NiCl_2(g)$ to trigonal NiInCl₅(g)² and appearing again in octahedral $NiAl_2Cl_8(g)$. In the analogous series of cobalt complexes, the intensity of the 15×10^3 cm⁻¹ band increases (Table III). This favors the hypothesis that $CoIn_2Cl_8(g)$ has no center of symmetry, which is consistent with a tetrahedral CoCl₄ chromophore.

Figure 3. Partial pressures in an ampule containing 1 mol of InCl₃/22.4 L: ---, excess NiCl₂; ---, 0.02 mol of NiCl₂/22.4 L.

For comparison, thermodynamic data related to the formation of gaseous complexes in the $NiCl_2/InCl_3$ and in the $CoCl_2/InCl_3$ systems are collected in Table IV. Within the limits of error, the enthalpies of adding the first and second $InCl_3(g)$ to $NiCl_2(g)$ are the same, $^2-36 \pm 2$ kcal mol⁻¹, but they are significantly less negative than for the addition of $InCl_3(g)$ to $CoCl_2(g)$. The same sequence of stability is observed in the dimerization of $CoCl_2(g)^{14}$ and $NiCl_2(g)^{15}$ (Table IV), but there the coordination is the same for both metals while here it appears to be different for $CoIn_2Cl_8(g)$ and $NiIn_2Cl_8(g)$. We have no proposition for reconciling the low stability of $NiL_2Cl_8(g)$ with its apparently octahedral NiCl₆ center.

Acknowledgment. This project has been supported by the Swiss National Science Foundation (Grant 2.359-0.75).

Registry No. NiIn₂Cl₈, 63950-50-5; NiInCl₅, 63950-49-2; NiCl₂, 7718-54-9; InCl₃, 10025-82-8; In₂Cl₆, 21563-01-9.

References and Notes

- H. Schäfer, Angew. Chem., 88, 775 (1976).
 F. Dienstbach and F. P. Emmenegger, Helv. Chim. Acta, 66, 166 (1977).
 F. Dienstbach and F. P. Emmenegger, Z. Anorg. Allg. Chem., in press.
- (4) F. P. Emmenegger, *Inorg. Chem.*, 16, 343 (1977).
 (5) E. W. Dewing, *Metall. Trans.*, 1, 2169 (1970).
- Deving, Metall. Trans., 1, 2169 (1970).
 A. Dell'Anna and F. P. Emmenegger, Helv. Chim. Acta, 58, 1145 (1975).
 O. Kubaschewski, E. L. Evans and C. B. Alcock, "Metallurgical Thermochemistry", Pergamon Press, Oxford, 1967.
 G. N. Papatheodorou, J. Phys. Chem., 77, 472 (1973). (6) (7)
- (9) Landolt-Börnstein, "Zahlenwerte und Funktionen", Vol. 2, Springer-Verlag, Heidelberg, 1960.
 (10) H. Schäfer et al., Z. Anorg. Allg. Chem., 278, 300 (1955).
 (11) The error limit given is twice the standard deviation. Systematic errors
- are not considered.
- C. W. DeKock and D. R. Gruen, J. Chem. Phys., 44, 4387 (1966). (13) O. N. Komshilova, G. J. Novikov, and O. G. Polyachenok, Russ. J. Phys.
- Chem. (Engl. Transl.), 43, 1680 (1969) (14)R. Schoonmaker, A. H. Friedmann, and R. F. Porter, J. Chem. Phys.,
- 31, 1586 (1950) (15) H. Schäfer and M. Binnewies, Z. Anorg. Allg. Chem., 410, 251 (1974).
- (16) R. C. Feber, "Heats of Dissociation of Gaseous Chlorides", Report LA-2841, Los Alamos Scientific Laboratory, 1963; available from the Office of Technical Services, U.S. Department of Commerce, Washington, DC
- (17) Chem. Soc., Spec. Publ., No. 17 (1964).

Contribution from the Laboratoire de Chimie de Coordination, 31030 Toulouse Cedex, France, and the Departments of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Michigan State University, East Lansing, Michigan 48824

Microwave Spectrum, Structure, Dipole Moment, and Quadrupole Coupling Constants of Iminosulfur Oxydifluoride

PATRICK CASSOUX, ^{1a} ROBERT L. KUCZKOWSKI, *1^b and ROBERT A. CRESWELL^{1c}

Received March 25, 1977

AIC70228K

The microwave spectra of HNSOF₂, DNSOF₂, H¹⁵NSOF₂, and HN³⁴SOF₂ have been measured. The molecule has a plane of symmetry containing the H, N, S, and O atoms and the hydrogen atom is trans to the oxygen atom. The following structural parameters have been determined from a least-squares analysis of the observed moments of inertia: d(NS) = 0.2° , $\angle NSF = 112.9 \pm 0.1^\circ$, $\angle FSF = 93.7 \pm 0.1^\circ$, and $\angle HNS = 115.5 \pm 0.5^\circ$. The values for the dipole moments obtained from Stark splittings are: HNSOF₂, $\mu_a = \pm 0.65 \pm 0.01$ D, $\mu_b = \pm 2.343 \pm 0.005$ D, $\mu_T = 2.43 \pm 0.01$ D; DNSOF₂, $\mu_a = \pm 0.45 \pm 0.05$ D, $\mu_b = \pm 2.44 \pm 0.01$ D, $\mu_T = 2.48 \pm 0.03$ D. The ¹⁴N quadrupole coupling constants are: HNSOF₂, $\chi_{aa} = 0.46 \pm 0.02$ MHz, $\chi_{bb} = 1.75 \pm 0.02$ MHz, $\chi_{cc} = -2.21 \pm 0.005$ MHz. These data are discussed in terms of the bonding and compared with similar molecules.

Introduction

Iminosulfur oxydifluoride, HN=S(O)F₂, was first prepared by Parshall et al.² from NH_3 and SOF_4 in ether in the presence of NaF. It belongs to the class of sulfur-nitrogen compounds which have been of increasing interest to chemists in recent years and many studies on chemical and physical properties, bonding, and structure have been performed³ particularly on the acyclic compounds. On the other hand, very few sulfur-nitrogen compounds have been studied by microwave spectroscopy: NSF,⁴ NSF₃,⁵ cis-HNSO,⁶ and NS.⁷

Two of the most interesting questions regarding HNSOF₂ are the following: (a) the conformation of this molecule (four

possible conformations are shown in Figure 1); (b) the detailed structure, particularly the determination of the N-S bond length, which should provide some insight on the bonding.

Microwave spectroscopy is an excellent tool for studying such problems. In the present work, the microwave spectra of HNSOF₂, DNSOF₂, H¹⁵NSOF₂, and HN³⁴SOF₂ have been assigned and the structure, dipole moment, and nuclear quadrupole constants were determined.

Experimental Section

Synthesis.³² The initial sample of the normal species HNSOF₂, as well as a sample of SOF₄ used in the synthesis of the ¹⁵N species,